Biological Wastewater Treatment

Filiz B. Dilek

METU, Dept. of Environmental Engineering

Wastewater (WW)

Domestic WW
From residential areas

To reduce the amount of pollutants in the water to such a level that the water can be returned to the environment without causing stress on aquatic life and be of sufficient quality for subsequent users.

Treatment plants reduce pollutants in wastewater to a level nature can handle.

Sustainable Development Goals (SDG)

SGD 6

Target 6.3 Wastewater

'By 2030, improve water quality by reducing pollution, eliminating dumping and minimizing release of hazardous chemicals and materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe reuse globally'.

To track progress toward target

SGD indicator 6.3.1

monitors the proportion of total, industrial and domestic wastewater flows safely treated in compliance with national or local standards.

With the goal: «Halving the proportion of untreated wastewater and substantially increasing recycling and safe reuse globally by 2030»

Global status of indicator 6.3.1 Proportion of wastewater flow (safely) treated > Domestic (2020)

https://www.sdg6data.org/indicator/6.3.1

International Atomic Energy Agency Atoms for Peace and Development Regional Workshop on Radiation Processing for Environmental Applications, Oct 17-21, 2022 Ankara

Wastewater Pollutants

- Suspended solids cause turbidity, sludge deposits and anaerobic conditions in the environment
- Biodegradable organics deplete oxygen and can cause anaerobic conditions in the environment
- Pathogens transmit disease
- Nutrients can cause eutrophication
- Heavy metals toxicity to biota and humans
- Refractory organics toxicity to biota and humans

Domestic Wastewater Composition

Contaminants	Unit	Weak	Medium	Strong
Solids, total	mg/L	350	720	1200
Dissolved Solids	mg/L	250	500	850
Suspended Solids	mg/L	100	220	350
Settleable Solids	mL/L	5	10	20
BOD ₅	mg/L	110	220	400
ТОС	mg/L	80	160	290
COD	mg/L	250	500	1000
Total N	mg/L	20	40	85
Total P	mg/L	4	8	15
Chlorides	mg/L	30	50	100
Sulfate	mg/L	20	30	50
Alkalinity as CaCO ₃	mg/L	50	100	200
Grease	mg/L	50	100	150
Total Coliform	#/100mL	$10^{6} - 10^{7}$	107-108	107-109
VOCs	μg/L	<100	100-400	>400

Typical Municipal WWTP

Secondary Treatment

Basic approach:

is to use *aerobic* biological degradation

Microorganisms present

- Bacteria- Dominant
- Protozoa
- Rotifers
- Algae
- Fungi
- Virus
- Yeast

Biological WW Treatment Systems

Two Types

1. Attached growth or Fixed Film

Organisms attached to some inert media like rocks or plastic.

2. Suspended Growth

Organisms are suspended in the treatment basin fluid.

Attached Growth or Fixed Film Processes

Trickling Filters

Rock Media

Typically 4 – 8 feet deep.

Trickling Filter (TF)

Plastic Media

Rotating Biological Contactor (RBC)

Discs mounted on a shaft and rotated while ~40% of discs is submerged in wastewater

Discs: light-weight plastic or wire

Slime is 1-3 mm in thickness on disc

Suspended Growth Processes

Activated Sludge Process (ASP)

Performance of the process depends highly on the recycle of sufficient biomass.

Also, on the sludge age (SRT), influent strength and composition.

ASP- aeration tank & sedimentation tank

(Aeration Tank) Biological Process

Secondary Sedimentation

Activated Sludge Process

Biomass - flocs

Floc structure > Sludge settleability

Recycle of sufficient biomass

Well settling

Bad Settling

ASP Modifications

✓ Conventional ASP (CAS)

- ✓ Tapered/Step Aeration ASP
- ✓ Completely-Mixed ASP
- ✓ High Rate ASP
- ✓ Extended Aeration ASP
- ✓ Contact Stabilization ASP
- ✓Oxidation Ditch
- ✓ Membrane Bioreactor (MBR)
- ✓ Sequencing Batch Reactors (SBRs)

and others

Membrane Bioreactors (MBR)

- Uses membrane separation instead of settling
- Requires much lower footprint than clarifiers
- High-quality effluent (SS, COD, bacteria, turbidity, etc.)
- High biomass concentrations

However:

- Cost & life expectancy of membrane modules
- Membrane fouling; Aeration for membrane cleaning very intense

IAEA International Atomic Energy Agency Atoms for Peace and Development Regional Workshop on Radiation Processing for Environmental Applications, Oct 17-21, 2022 Ankara

Sequencing Batch Reactors (SBRs)

- Fill and draw type
- Sequentially in a single tank

Flexible

Advanced (Tertiary) Treatment)

Biological Nutrient (N, P) Removing (BNR) Systems

Sludge Processing

Sludge Disposal

Land Spreading

Gardens, agricultural land, forest land, other public recreational areas

Wirbelluf

- Landfilling
- Incineration

Industrial WW pollutants

Industry	Major pollutants
Canning, Dairy	Organics, suspended solids (SS)
Tannery	Organics, metals, dyes, SS
Brewery	Color, organics, SS
Oil and refinery	Oil, petrochemicals
Textile	Color, dyes, SS, oil, organics
Mining	SS, metals, acids and salts
Electronic	Metals

High organic content; recalcitrant/toxic (hazardous) compounds

Emerging contaminants!

Pesticides, Pharmaceutical and personal care products (PPCPs), Endocrin disruptors (EDCs), Flame retardants, Drugs, Plasticizers, etc.

around 700 such different contaminants disposed into the environment; are not completely metabolized and enter into the sewage/drainage system making their way to wastewater treatment plants

Most of these contaminants are not eliminated by biological process because of their recalcitrant nature.

Factors

- Physico-chemical characteristics (such as solubility, biodegradability, toxicity)
- Operational parameters, especially sludge age (SRT)

Effect of operational parameters

Sustainable Chemistry and Pharmacy 29 (2022) 100784

Investigating the effect of solids retention time on pesticides removal in an activated sludge process

Kumru Kocaman, Ulku Yetis, Filiz B. Dilek*

Department of Environmental Engineering, Middle East Technical University, 06800,

ARTICLE INFO

Keywords: Biological treatment Chemical oxygen demand removal Pesticide removal Solids retention time

ABSTRACT

The levels of pesticic ing. Operational con should be evaluated gated the influence c dazim, imidacloprid, ceiving these pestici 30 d). When the pest ing carbendazim up gardless of SRT. Wh were generally attair ciency. Aclonifen bei in a mixture, when th all until 50, 10, and spectively, at all SR1 COD removal was ev

When the pesticides were present in combination, each 50 μ g/L, there were no adverse effects on COD removal, provided that SRT is 30 d. The competitive inhibition of COD removal was evident. The activated sludge process receiving pesticides in combination could be operated with better pesticide and COD removal performances if SRT is closely were no adverse effer Controlled.

receiving pesticides in combination could be operated with better pesticide and COD removal performances if SRT is closely controlled.

SRT is a very important.

But, still removal efficiency not high

IAEA International Atomic Energy Agency Atoms for Peace and Development Regional Workshop on Radiation Processing for Environmental Applications, Oct 17-21, 2022 Ankara Recently, Advanced Oxidation Processes (AOPs):

- ≻UV
- ≻H2O2
- **≻**03
- ➢ Fenton's Oxidation
- ➢Irradiation

either to remove them or to enhance their biodegradability!

But, the intermediate products generated may remain more toxic

Irradiation as pretreatment

Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)—Effect of gamma irradiation

Cavit B. Bural^a, Goksel N. Demirer^a, Omer Kantoglu^b, Filiz B. Dilek^{a,*}

^a Middle East Technical University, Department of Environmental Engineering, 06531 Ankara, Turkey

^b Turkish Atomic Energy Authority, Saraykoy Nuclear Research and Training Center, 06982, Kazan, Ankara, Turkey

ARTICLE INFO

Article history: Received 10 August 2009 Accepted 24 September 2009

Keywords: Opium alkaloid containing wastewater Biodegradability SBR Gamma irradiation

ABSTRACT

Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83–90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD₅/COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm⁻³. Possible reasons for this problem were investigated, and the hi

wastewate modifying modificatio was increa SBRs fed v provided c of complet analyses at wastewater provided complete thebaine removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application.

Tertiary treatment technologies are considered as the most suitable alternatives for emerging contaminats treatment, but their complete removal is yet to be achieved.

More research needed to quest newer, effective and economical treatment technologies for WW .

Thank you...

